

MODBUS

Modbus Register Listing

SAGE PRIME REV. 1.80-2.07

UINT32	IEEE Float		SCALED INT32*			UINT32		IEEE Float		NT32*	
Reg Offset	Reg Offset	Туре	Reg Offset	Туре	Reg Description	Reg Offs	g Reg et Offset	Туре	Reg Offset	Туре	Reg Description
256		UINT8			format flag		550	FLOAT	806		iir filter coeff
256		UINT8			modbus_unit_id		552	FLOAT	808		flow_min
257		UINT8			output mode sel		554	FLOAT	810		flow_max
257		UINT8			fix_pt selection		556	FLOAT	812		PULSE COUNT
257		UINT1			bRun		558	FLOAT	814		temp_max
257		UINT1			bTotal	302		UINT16			dac1_min
257		UINT1			bEEProm	304		UINT16			dac1_max
257		UINT1			bReset	306		UINT32			serial number
257		UINT1			bLeadEn	308		ASCII			RATE string
257		UINT1			bDAClo	310		ASCII			TOTAL string
257		UINT1			bDAChi	312		UINT32			current totalizer
	514	FLOAT	770	LONG	CAL_VAL	314		UINT32			ADC0
	516	FLOAT	772	LONG	K-FACTOR	316		UINT32			ADC1
	518	FLOAT	774	LONG	VREF	318		UINT32			ADC2
	520	FLOAT	776	LONG	LOAD-RES	320		UINT32			ADC3
TEMP	522	FLOAT	778	LONG	COEFF A		578	FLOAT	834	LONG	current flow
TEMP	524	FLOAT	780	LONG	COEFF B		580	FLOAT	836	LONG	current temp
TEMP	526	FLOAT	782	LONG	COEFF C		582	FLOAT	838	LONG	rtd_mWatts
TEMP	528	FLOAT	784	LONG	COEFF D		584	FLOAT	840	LONG	rtd_res
	530	FLOAT	786	LONG	DISP A		586	FLOAT	842	LONG	ref_res_r
	532	FLOAT	788	LONG	DISP B		588	FLOAT	844	LONG	ref_res_d
	534	FLOAT	790	LONG	DISP C		590	FLOAT	846	LONG	dac_smooth
	536	FLOAT	792	LONG	DISP D		592	FLOAT	848	LONG	lead
FLOW	538	FLOAT	794	LONG	COEFF A		594	FLOAT	850	LONG	oheat
FLOW	540	FLOAT	796	LONG	COEFF B		596	FLOAT	852	LONG	bv
FLOW	542	FLOAT	798	LONG	COEFF C		598	FLOAT	854	LONG	fv
FLOW	544	FLOAT	800	LONG	COEFF D		600	FLOAT	856	LONG	tv
FLOW	546	FLOAT	802	LONG	COEFF E		602	FLOAT	858	LONG	lv
FLOW	548	FLOAT	804	LONG	COEFF F	*SCALED	INT32 register cont	ents form INT32	values by mult	iplying the IEEE	FLOAT x 1000

*SCALED INT32 register contents form INT32 values by multiplying the IEEE FLOAT x 1000 $\,$ ex. FLOAT -> 112.768 = SCALED INT32 -> 112768

Modbus Protocol & Function Codes

Sage Prime Meters support communication with other devices via MODBUS® protocol using RTU transmission mode. The Modbus protocol defines a message structure that controllers will recognize and use, regardless of the type of networks over which they communicate. It establishes a common format for the layout and contents of message fields. Transactions use a masterslave technique, in which only one device (the master) can initiate transactions (called queries). The other devices (the slaves) respond by supplying the requested data to the

master and by taking the action requested in the query. Sage Meters operate as slaves to other Modbus devices and default to 19200-8-E-1, however, the

following modes may also be software selectable:

9600-8-N-1 (Baud-Bits-Parity-Stop) 9600-8-E-1 9600-8-O-1 19200-8-N-1¹ 19200-8-E-1 (Default) 19200-8-O-1

MESSAGE FRAMING

Messages start with a silent interval of at least 3.5 character times followed by 4 fields and then followed by another silent interval of at least 3.5 character times. The first field contains the device address. The second field contains the function code. The third field contains the data and byte counts. The fourth field contains the CRC value.

ADDRESS FIELD

The address field contains one byte. Sage Prime Meters will transmit response packets to addresses which are between 1 to 240 decimal (inclusive). Modbus packet writes may be sent to broadcast address 00, however the Prime will not reply with a response packet.

FUNCTION CODE FIELD

The function code field contains one byte. See the section titled Function Codes Supported by Sage Prime.

DATA FIELD

The data field contains four or more bytes. This information is used by the Meter to take the action defined by the function code, or to read or write data to one or many registers.

CRC FIELD

The CRC-16 (cyclical redundancy check) field is two bytes, containing a 16-bit binary value. The CRC value is calculated by the transmitting device, which appends the CRC to the message. The receiving device recalculates a CRC during receipt of the message, and compares the calculated value to the actual value it received in the CRC field. If the two values are not equal, the message will be discarded.

¹ Parity on the Wireless Devices manufactured by Obvius is "None" rather than "Even". The Sage default is 19200-8-E-1. Change to 19200-8-N-1 for the Obvius Modhoppers and related wireless devices.

Function Codes Supported by SAGE Prime

03 (0X03) READ HOLDING REGISTERS

Identical operation as code 04 READ INPUT REGIS-TERS described below, except READ only.

04 (0X04) READ INPUT REGISTERS

Reads the binary contents of the specified register. This is READ/WRITE register. Sage Prime values are typically 32 bits wide (4 bytes) and contain a single IEEE754 floating point value. Modbus registers are 16 bits wide (2 bytes) so a minimum of 2 Modbus registers are required to transfer all floating point bits to the master. See section titled Sage Floating Point Format.

QUERY

The query message specifies the starting register address and the quantity of registers to be read.

0x03 READ MULTIPLE HOLDING REGISTERS or 0x04 READ MULTIPLE INPUT REGISTERS

-QUERY-	-RESPONSE-
SA – SLAVE ADRESS	SA
04 – FUNC CODE	04
RH – REG ADDR HI	BC – # of data bytes to follow
RL – REG ADDR LO	DATA0
00 – # OF REGS HI	DATA1
CT – # OF REGS LO	DATAn
CH – CRC MSB	CH CRC MSB
CL – CRC LSB	CL CRC LSB

REG ADDR HI (RH) is set to:

01 for INTEGER access of integral values 02 for IEEE754 floating point 03 for Scaled (x1000) long integer of floating point value

REG ADDR LO (RL) is the starting address index into the register structure. See section titled Sage Register Index Values.

CT is the register count needed to transfer data. Typically this byte is set to 02 to request 1 full IEEE754 floating point value. (Modbus single registers are 16 bits wide, Sage floating point values are 32 bits wide.)

DATA0-DATAn are bytes in binary format returned from the slave device representing the contents of the selected register(s).

NOTE: values indicated with 0x prefix are in hexadecimal, otherwise in decimal notation.

16 (0x10) WRITE REGISTERS

Writes the binary contents of the specified register into the meter. Sage Prime values are typically 32 bits wide (4 bytes) and contain a single IEEE754 floating point value. Modbus registers are 16 bits wide (2 bytes) so a minimum of 2 Modbus registers are required to transfer all floating point bits into the meter. See section titled Sage Floating Point Format.

Query

66

The query message specifies the starting register address and the quantity of registers to be written.

16 (0x10) WRITE MULTIPLE REGISTERS

-QUERY-	-RESPONSE-			
SA – SLAVE ADRESS	SA			
0x10 - FUNC CODE	0x10 - 16 FUNC CODE			
RH – REG ADDR HI	RH – REG ADDR HI			
RL – REG ADDR LO	RL – REG ADDR LO			
00 – # OF REGS HI	00 – # REGS HI			
CT – # OF REGS LO	CT – # REGS LO			
BC – BYTES COUNT	CH – CRC MSB			
DATA0	CL – CRC LSB			
DATA1				
DATAn				
CH – CRC MSB				
CL – CRC LSB				
REG ADDR HI (RH) is set to:				

01 for INTEGER access of integral values 02 for IEEE754 floating point 03 for Scaled (x1000) long integer of floating point value

REG ADDR LO (RL) is the starting address index into the register structure. See section titled Sage Register Index Values.

CT is the register count needed to transfer data. Typically this byte is set to 02 to request 1 full IEEE754 floating point value.

BC is the actual number of bytes that follow.

DATA0-DATAn are bytes in binary format transmitted to the slave device representing the contents of the selected register(s).

NOTE: THIS PAGE APPLIES TO REV. 1.81-1.83

17 (0x11) REPORT SLAVE IDENTIFICATION*

This query requests from the specified slave address a detailed identification packet with a run status, and Sage Prime and firmware revision response. (Prime will not respond to broadcast slave address 00.)

Query

The query message specifies the slave address, function code, and CRC check words.

17 (0x11) REPORT SLAVE ID

-QUERY-
SA – SLAVE ADRESS
11 – FUNC CODE
CL – CRC LSB
CH – CRC MSB

-RESPONSE-SA 11 BC - BYTES COUNT, 19 SD - SLAVE ID (DEVICE SPECIFIC), 0x5A RS - RUN STATUS INDICATOR, 0xFF ASCII Text - SAGE PRIME v1.81x CH CL

Response

The Sage Prime will respond with an echo of the slave address and function code. The byte count will be 19 (0x13) to allow the master to account for all the remaining bytes that follow.

REPORT SLAVE ID Example: **MODBUS SLAVE ADDRESS (0X31 Hex=49 Decimal default)** Master Query -> 30 11 D5 BC Prime Response -> 30 11 13 5A FF 53 61 67 65 20 50 72 69 6D 65 20 76 31 2E 38 31 20 F1 2B ASCII translation-> Sage Prime v1.81

*Not implemented in revision 1.80

ILLEGAL FUNCTION CODES*

The Sage Prime will respond to other Modbus function codes not documented in this revision, these codes are considered unsupported by Sage Metering. Unsupported function codes will cause the Prime to reply with Modbus ILLEGAL FUNCTION status.

SAGE REGISTER INDEX VALUES

DATA				ADDRESS
TYPE	VALUE	SIZE	INDEX	DESCRIPTION
Byte	slave_ad	1 BYTE	1	Modbus Slave Address*
float	flow_rate;	1 IEEE754	578	actual flow rate
float	flow_temp;	1 IEEE754	580	process temperature
float	rtd_mWatts;	1 IEEE754	582	sensor power reading
float	rtd_res;	1 IEEE754	584	actual sensor probe resistance
float	ref_res_r;	1 IEEE754	586	actual temperature probe resistance
integ	totalizer;	1 uLONG	312	actual displayed total

*NOTE: Sage Prime Meters are factory programmed with the MODBUS SLAVE ADDRESS (0X31 Hex=49 Decimal default)

It may be extremely useful to be able to write to an unknown slave address with a simple broadcast command. Be sure only one Sage Prime is connected during any broadcast writes using slave address = 0.

Writing into unspecified registers (not defined above) can render the unit non-functional or overwrite factory calibration data yielding incorrect operation.

EXAMPLE MODBUS PACKET

Query

This packet will request of the addressed slave to respond by sending back the contents of registers 578 to 582 (inclusive). Three registers: flow rate through RTD mWatts in IEEE754 floating point

format.

```
0x31 - MODBUS SLAVE ADDRESS (0X31 Hex=49 Decimal default)
0x04 - READ INPUT REGS FUNCTION CODE
0x02 - STARTING REGISTER HI BYTE (0x01 = 256, 0x02 = 512, 0x03
= 768)
0x42 - STARTING REGISTER LO BYTE (512 + 66 = register access =
578)
0x00 - COUNT MSB (ALWAYS ZERO)
0x06 - COUNT OF ALL DESIRED REGISTERS
0xD5 - CRC HI BYTE
0x85 - CRC LO BYTE
```

Sage Register Output Format

INTEGER REPRESENTATION

Computer systems hosting a MODBUS network typically store integer values to represent nonfractional quantities.

All registers addressed above 256 (0x0100-0x1FF) will transfer 16 bit integral quantities in response to all master queries. MODBUS requires that the register count reflects each 16 bit registers transmitted to ensure that no bytes are missing in the transfer of integer quantities. (Note: Most Sage Prime registers are IEEE754 quantities; integer representations of these registers will require significant translation.)

IEEE754 FLOATING POINT

Computer systems hosting a MODBUS network typically store single precision floating point data in the standard IEEE754 format.

All registers addressed above 512 (0x0200-0x02FF) will transfer full 32 bit single precision quantities in response to all master queries. MODBUS requires that two 16 bit registers are transmitted to ensure that no bytes are missing in the transmission of 32 bit quantities.

SCALED DECIMAL REPRESENTATION

Computer systems hosting a MODBUS network may choose represent single precision floating point values as scaled long integers (32 bit values). The Sage Prime will convert floating point registers to integral units by multiplying the value by 1000.

Ex. Floating point value 1234.567 will be converted to integral value 1234567

All registers addressed above 768 (0x0300-0x03FF) will transfer full 32 bit scaled integer quantities in

response to all master queries. MODBUS requires that two 16 bit registers are transmitted to ensure that no bytes are missing in the transmission of 32 bit quantities.

For more information on the MODBUS protocol, see: http://www.modbus.org/tech.php

SAGE ADDRESSER SOFTWARE

Addresser is a convenient software kit that includes Addresser software, as well as an optically isolated ULINX RS485 to USB converter. The Addresser is a READ/WRITE Program with drop-down menus for convenient user interface between your PC or laptop and the Modbus Terminals of the Sage Prime. Contact Sage for ordering information and instructions.

SAGE ADDRESSER TECHNICAL ASSISTANCE

Visit our website at www.sagemetering.com, select "Knowledge Base" and "Service Manuals & Guides" then select "PRO-PRM-080911 Website Addresser 3_14" or "Modbus Poll Instructions".

User Manual

Sage Addresser Typical Printout (Version 3.14)

SMB Printout Serial# 50043 Units: SCFM Modbus: 0x31 6/23/2011 12:01:50 PM

Parameter	Decimal Data	Hex Format		
Calib mW Val	44.91799	8433AC08		
K-Factor	1.000000	7F000000		
Lead Gain Val	0.992098	7E7DFA22		
Flow Load Res	20.10000	8320CCCD		
Temp Calib[A]	-3.07714	80C4F000		
Temp Calib[B]	1.144714	7F128600		
Temp Calib[C]	-0.00121	759F7000		
Temp Calib[D]	0.000003	6C3F3400		
Temp Disp Null	0.000000	0000000		
Temp Disp Gain	1.000000	7F000000		
Amp Null Val	-0.16634	7CAA56DE		
Amp Gain Val	1.008498	7F011676		
Flow Coeff[A]	-20.7094	83A5ACF2		
Flow Coeff[B]	0.720296	7E38654E		
Flow Coeff[C]	-0.00880	789033FC		
Flow Coeff[D]	0.000067	710D75E4		
Flow Coeff[E]	0.000000	0000000		
Flow Coeff[F]	0.000000	0000000		
Filtering	0.500000	7E000000		
Min Flow/LFC	0.000000	0000000		
Full Scale	1200.000	89160000		
Min Temp	40.00000	84200000		
Units/Pulse	100.0000	85480000		
DAC1 Min	725.0000	000002D5		
DAC1 Max	3674.000	00000E5A		
Serial Number	50043.00	0000C37B		
Flow Units	12964504	4D464353		
Total Units	11790099	46464353		
Output Config	8.000000	8000000		
Pulse Dur	250.0000	000000FA		

Copyright 2011, Sage Metering Inc.