In this post, you will find the Sage in-situ gas flow meter calibration directions. The Sage method for verifying that the thermal mass meter is calibrated allows the meter to remain in the pipe, is easy and quick, and checks the performance of both the sensor and transmitter. If you are interested in comparing the Sage method to various other manufacturers’ onsite calibration methods visit “Thermal Mass Flow Meter Manufacturers’ In-Situ Calibration Methods.”

Sage In-Situ Calibration Verification

The Sage Prime raw calibration milliwatts (mW), which is required to conduct an “in-situ” calibration check quickly and conveniently, is continuously shown on the top left-hand corner of the meter’s display. When comparing the raw mW data with the initially reported “no flow” value, the calibration of the meter is verified. The initial data is on the back of the meter on a data tag (as well as on the Certificate of Conformance). When the two data points match it verifies that the meter is calibrated, confirms that both the sensor and transmitter are accurate, that there is no drift or shift, and that the sensor is clean.

Calibration Directions

Create and verify that there is no gas flow. Any time the user creates a “no flow” condition, the onsite calibration procedure can be performed. This can be accomplished a few ways. The obvious way is to close off the process gas flow. However, this is not always easy or possible, particularly in natural gas supply lines.  Another inexpensive way to create a no-flow condition is to use one of the Sage Isolation Valve Assemblies (P/N SVA05 or SVA07). These assemblies are an inexpensive add-on for the Sage meter.

To do this:

  • Loosen the lower collar clamp thoroughly by using an Allen wrench (for the SVA05 use 9⁄64” and for the SVA07 use 3⁄16”).
  • Slightly loosen the compression fitting until the probe can easily lift, then raise the meter’s probe until the safety chain becomes taut.
  • Tighten the compression fitting.
  • Close the isolation valve and check the zero mW as per “2” below.

Alternatively, an ambient air test can also be used to create a “no-flow” condition. In this case, merely remove the probe from the pipe and cover up the sensor with a plastic bag. Then place the capped probe into an empty plastic water bottle.

In-Situ Gas Flow Meter Calibration Directions
Another inexpensive way to create a no-flow condition is to use one of the Sage Isolation Valve Assemblies (PN SVA05 or SVA07).

Compare the raw data mW display with initial factory data. Note the raw mW number on the top left-hand side of the meter’s display. After one to three minutes of “no flow,” check the reading against the flow meter’s data tag on the back of the meter. This data is also on the last line(s) of the meter’s Certificate of Conformance.

A value within five milliwatts (mW) of the original factory value (assuming the same gas is checked at the same pressure) indicates that the meter is still in calibration.

A value between 5-10 mW of the initial factory value, also  means that the meter is still  in calibration, but the reading may have been influenced by one or more of the following factors:

  • gas composition
  • pressure
  • dirt
  • non-zero conditions
  • sensor orientation

If we investigate and correct these factors, it is expected that the difference between the “no-flow” mW display and the initial factory data would be less than or equal to 5 mW.

If the meter fails (or is borderline) the calibration verification, it is more likely that the sensor is dirty and is recommended to clean the sensor first. A contaminated sensor could create additional heat transfer. One of the advantages of the Sage in-situ analysis is that it will not pass the calibration. In this case, remove the probe and clean the sensor (use a non-corrosive solvent). A soft brush may be used to clean the sensor surface gently, however, use caution and avoid damaging the sensor elements (RTDs).

In any case, it is probable that a technician in the field may not be able to simulate the initial Sage calibration conditions completely while in the pipe. For this reason, a difference of 10 mW is acceptable and indicates the meter is still in calibration.

Why do we need In-Situ Calibration?

The Sage onsite calibration verification is a simple procedure that eliminates the need for annual factory calibrations. This, of course, saves time and money for the user. Also, in order to comply with some greenhouse gas or climate change regulations, Sage Metering recommends a quarterly in-situ calibration check for  EPA 40CFR 98 and CDM Methodologies.

For CAR  compliance, Sage Metering recommends a quarterly In-Situ Calibration Check for the following Protocols:

  • U.S. Landfill Protocol,  Version  4.0,  Par.  6.2
  • U.S. Livestock Protocol,  Version  3.0,  Par.  6.2
  • U.S. Livestock Protocol,  Version  4.0,   Par.  6.3
  • Mexico Landfill Protocol,  Version  1.1,  Par.  6.2
  • Mexico Livestock Protocol,  Version  2.0,  Par.  6.2

As per the protocols, the maximum allowable drift is 5%.  Percent drift can be calculated by multiplying the mW change from factory value (see  2) by 1.0% (i.e.  each mW change equals 1%  drift).

Reference

In-Situ Calibration Check | Sage Metering. (n.d.). Retrieved from https://sagemetering.com/in-situ-calibration-check/_br

Leave a Reply

Your email address will not be published. Required fields are marked *